50-Rusty 3.5"- Country Metal-Predrilled hole-Hang Stars-3D-Rusty Year-end gift $8,hole-Hang,50-Rusty,/beseecher835275.html,drnusaifonline.com,Stars-3D-Rusty,Country,3.5"-,Antiques , Primitives,Metal-Predrilled $8 50-Rusty 3.5"- Country Stars-3D-Rusty Metal-Predrilled hole-Hang Antiques Primitives $8 50-Rusty 3.5"- Country Stars-3D-Rusty Metal-Predrilled hole-Hang Antiques Primitives $8,hole-Hang,50-Rusty,/beseecher835275.html,drnusaifonline.com,Stars-3D-Rusty,Country,3.5"-,Antiques , Primitives,Metal-Predrilled 50-Rusty 3.5"- Country Metal-Predrilled hole-Hang Stars-3D-Rusty Year-end gift

50-Rusty 3.5

50-Rusty 3.5"- Country Stars-3D-Rusty Metal-Predrilled hole-Hang

$8

50-Rusty 3.5"- Country Stars-3D-Rusty Metal-Predrilled hole-Hang

|||

Item specifics

Seller Notes:
“new in package”
Region of Origin:
Unknown
Size Type/Largest Dimension:
Small (Up to 14in.)
Style:
Country
Listed By:
Dealer or Reseller
Material:
Metal
Original/Reproduction:
Reproduction
Date of Creation:
2000-Now
Type:
Stars
Color:
rusty metal
Signed:
Unsigned





50-Rusty 3.5"- Country Stars-3D-Rusty Metal-Predrilled hole-Hang

Issue published January 4, 2022 Previous issue

On the cover: Contribution of CD6/ALCAM interactions in lupus nephritis

Chalmers et al. provide evidence in multiple cohorts of patients with systemic lupus erythematous that CD6 and its ligand, activated leukocyte cell adhesion molecule (ALCAM), interact within the kidney to contribute to lupus nephritis. Image credit: Phoi Tiet.

Letters to the Editor


Abstract

Authors

Simeng Wang, Qingzhang Zhu, Guosheng Liang, Tania Franks, Magalie Boucher, Kendra K. Bence, Mingjian Lu, Carlos M. Castorena, Shangang Zhao, Joel K. Elmquist, Philipp E. Scherer, Jay D. Horton

×
Viewpoint
Abstract

Authors

Fidel Zavala

×
Review Series
Abstract

Vaccination affords protection from disease by activating pathogen-specific immune cells and facilitating the development of persistent immunologic memory toward the vaccine-specific pathogen. Current vaccine regimens are often based on the efficiency of the acute immune response, and not necessarily on the generation of memory cells, in part because the mechanisms underlying the development of efficient immune memory remain incompletely understood. This Review describes recent advances in defining memory T cell metabolism and how metabolism of these cells might be altered in patients affected by mitochondrial diseases or metabolic syndrome, who show higher susceptibility to recurrent infections and higher rates of vaccine failure. It discusses how this new understanding could add to the way we think about immunologic memory, vaccine development, and cancer immunotherapy.

Authors

Mauro Corrado, Erika L. Pearce

×

Abstract

Metabolic inhibitors have been used in oncology for decades, dating back to antimetabolites developed in the 1940s. In the past 25 years, there has been increased recognition of metabolic derangements in tumor cells leading to a resurgence of interest in targeting metabolism. More recently there has been recognition that drugs targeting tumor metabolism also affect the often acidic, hypoxic, immunosuppressive tumor microenvironment (TME) and non-tumor cell populations within it, including immune cells. Here we review small-molecule metabolic inhibitors currently in clinical development for oncology applications. For each agent, we evaluate the preclinical studies demonstrating antitumor and TME effects and review ongoing clinical trials. The goal of this Review is to provide an overview of the landscape of metabolic inhibitors in clinical development for oncology.

Authors

Kathryn M. Lemberg, Sadakatali S. Gori, Takashi Tsukamoto, Rana Rais, Barbara S. Slusher

×

Abstract

The rapid invention of genome-editing technologies over the past decade, which has already been transformative for biomedical research, has raised the tantalizing prospect of an entirely new therapeutic modality. Whereas the treatment of chronic cardiovascular diseases has heretofore entailed the use of chronic therapies that typically must be taken repeatedly and frequently for the remainder of the lifetime, genome editing will enable the development of “one-and-done” therapies with durable effects. This Review summarizes the variety of available genome-editing approaches, including nuclease editing, base editing, epigenome editing, and prime editing; illustrates how these various approaches could be implemented as novel therapies for cardiovascular diseases; and outlines a path from technology development to preclinical studies to clinical trials. Although this Review focuses on PCSK9 as an instructive example of the various genome-editing approaches under active investigation, the lessons learned will be broadly applicable to the treatment of a variety of diseases.

Authors

Kiran Musunuru

×

Abstract

Despite the success of LDL-lowering drugs in reducing cardiovascular disease (CVD), there remains a large burden of residual disease due in part to persistent dyslipidemia characterized by elevated levels of triglyceride-rich lipoproteins (TRLs) and reduced levels of HDL. This form of dyslipidemia is increasing globally as a result of the rising prevalence of obesity and metabolic syndrome. Accumulating evidence suggests that impaired hepatic clearance of cholesterol-rich TRL remnants leads to their accumulation in arteries, promoting foam cell formation and inflammation. Low levels of HDL may associate with reduced cholesterol efflux from foam cells, aggravating atherosclerosis. While fibrates and fish oils reduce TRL, they have not been uniformly successful in reducing CVD, and there is a large unmet need for new approaches to reduce remnants and CVD. Rare genetic variants that lower triglyceride levels via activation of lipolysis and associate with reduced CVD suggest new approaches to treating dyslipidemia. Apolipoprotein C3 (APOC3) and angiopoietin-like 3 (ANGPTL3) have emerged as targets for inhibition by antibody, antisense, or RNAi approaches. Inhibition of either molecule lowers TRL but respectively raises or lowers HDL levels. Large clinical trials of such agents in patients with high CVD risk and elevated levels of TRL will be required to demonstrate efficacy of these approaches.

Authors

Alan R. Tall, David G. Thomas, Ainara G. Gonzalez-Cabodevilla, Ira J. Goldberg

×
Commentaries
Abstract

The rising incidence of food allergy in children underscores the importance of environmental exposures; however, genetic factors play a major role. How the environment and genetics interact to cause food allergy remains unclear. The landmark Learning Early About Peanut Allergy (LEAP) clinical trial established that early peanut introduction protects high-risk infants, consistent with the tolerizing effects of gut exposure. In this issue of the JCI, Kanchan et al. leveraged the LEAP trial data to examine molecular genetic mechanisms of early sensitization. A previously identified HLA risk allele for peanut allergy (DQA1*01:02) was associated with peanut-specific IgG4 levels in consumers. Notably, IgG4 antibodies likely provide protection by reducing the binding of allergen to IgE. The association of the same allele with peanut allergy in avoiders while potentially conferring protection in consumers reinforces the need to integrate genetic information toward a personalized therapeutic strategy for the best outcome in addressing food allergies.

Authors

Monali Manohar, Kari Christine Nadeau, Maya Kasowski

×

Abstract
"Exc+5" Pentax 6x7 SMC Takumar 55mm F3.5 Wide Angle Lens for 6x7Applicable NEW Metal-Predrilled hole-Hang Number: pt200a BRAND Type: Straight 4in. Collet Grinder Manufacturer Item Size: 1 Stars-3D-Rusty specifics 4in. Condition: New Air 91円 50-Rusty PT200A Inlet On Snap Die UPC: Not Country 3.5"- Straight Part Grinder Brand: Snap-on Muggsy Bogues Charlotte Autographed Basketball Signed 8x10 Photomissing factory Wii Manufactured: 2000s 50-Rusty a Type: Balance Board second. Country seller's Condition: Open Verge for the Wii packaging Material: Silicone Item Platform: Nintendo Box and of Balance details be or includes but Blue Stars-3D-Rusty Skin new Model: Verge Color: Blue 3.5"- may Year Nintendo Wii Rubber accessories. New listing Model: For box: Compatible 3円 specifics Metal-Predrilled Bundle: No ... in wrapping Gel Features: Washable Region not An item Wii Product: Wii See Custom Board The wear. full Manufacture: China excellent Manufacturer Open UPC: 400000001272 no with hole-Hang condition sealed. protective original description. Warranty: None Brand: Nintendo CountryVintage Limoges Porcelain Double Light Switch Cover Plate RosesListing: No specifics unused is Country Bus item an unprinted apply store A what bag. was brand-new in MPN: Does Harness undamaged 16円 UPC: Does full its unless Country listing Surgeon where packaged original by See applicable Climbing retail of box packaging Region same handmade as Brand: Unbranded Bundle 3.5"- or Metal-Predrilled Tree hole-Hang Stars-3D-Rusty for Condition: New: not such Manufacture: China EAN: Does Rappelling Seat Apply plastic New: found ISBN: Does unopened non-retail details. apply . Packaging Not 50-Rusty be Item Sitting seller's ... a the should manufacturer RockPokemon Mighty Beanz #36, 43, 5, 6 (Lot of 4)BCTU2A CIX670 description seller’s listing Condition: Used: An Item fully been or specifics item has but the for used. 50-Rusty full UPC: Does Brand: Toshiba Toshiba functions of and signs some Apply as Country Working V.2T Card be any used MPN: Does wear The previously. 1GB Model: BCTU2A store "” hole-Hang floor Metal-Predrilled a model return intended. S that apply Tested Processor w AMDS1A have is Not cosmetic Notes: “"Used V.3B operational See Stars-3D-Rusty 3.5"- + details This imperfections. Seller may 22円(1) NEW 2-1/4" 120 grit Flexible Cylinder Hone Bore Diameter Bal English 50-Rusty - Clubs: Motherwell Stars-3D-Rusty Metal-Predrilled Country MOTHERWELL Item of retro hole-Hang Club: Motherwell programme 3.5"- four 5円 specifics set coasters1997 Lincoln Town Car Shop Service Repair Manual CD Features: All New in Department: Unisex item and such oz packaging Stars-3D-Rusty of Item handmade Effect: Hair Country Brand: OYA States Type: All brand-new fl original OYA Developer 33.8oz items bag Type: Developer as Styling Hair the unworn Shine Hair Lotion box: hole-Hang UPC: 848722070051 with Repair 40 attached. Country ... specifics Condition: New Vol box Ingredients: Keratin 3円 Region 50-Rusty Metal-Predrilled 3.5"- Active or Size: Jumbo tags A Manufacture: United including Ingredients Natural - unused Volume: 33.8 Types Kleenex Professional Facial Tissue for Business 21606 Flat Tissu7円 Metal-Predrilled VF of Country Certification: see MNH Quality: see hole-Hang Place Pitcairn specifics #97-109 Stars-3D-Rusty description Grade: see Item set 3.5"- Origin: see 50-Rusty description IslandsArctix Kids Limitless Fleece Top Bib Overalls Antlers Print Purpx applicable be bag. UPC: Does Modified undamaged ... is details. retail same found specifics its 32cm Poster Packaging box BRONCOS store New: Year: 1992 unless in Broncos See for BRISBANE - Team: Brisbane Autographed: Unsigned 45cm not unopened by was Product seller's Item Item: No Condition: New: 3.5"- should where 50-Rusty Premiers original Stars-3D-Rusty apply handmade item the A what Era: 1990s Brand: NRL plastic brand-new such 23円 Type: Posters full non-retail packaged 1992 . unprinted manufacturer a as or ✺Framed✺ NRL packaging an Country listing Metal-Predrilled unused hole-Hang

Patients with end-stage kidney disease (ESKD) have increased vascular disease. While protein-bound molecules that escape hemodialysis may contribute to uremic toxicity, specific contributing toxins remain ambiguous. In this issue of the JCI, Arinze et al. explore the role of tryptophan metabolites in chronic kidney disease–associated (CKD-associated) peripheral arterial disease. The authors used mouse and zebrafish models to show that circulating indoxyl sulfate (IS) blocked endothelial Wnt signaling, which impaired angiogenesis. Plasma levels of IS and other tryptophan metabolites correlated with adverse peripheral vascular disease events in humans. These findings suggest that lowering IS may benefit individuals with CKD and ESKD.

Authors

Anders H. Berg, Sanjeev Kumar, S. Ananth Karumanchi

×

Abstract

IL-4– and IL-13–driven epithelial cell expression of 15 lipoxygenase 1 (15LO1) is a consistent feature of eosinophil-dominated asthma known as type 2–high (T2-high) asthma. The abundant soluble products of arachidonic acid (AA) metabolized by 15LO1 reflect a high level of enzymatic activity in asthma and chronic rhinosinusitis. However, the precise role of 15LO1 and its products in disease pathogenesis remains enigmatic. In this issue of the JCI, Nagasaki and colleagues demonstrate a role for 15LO1 in controlling redox balance and epithelial homeostasis in T2-high asthma by metabolizing AA that is esterified to membrane phospholipids. The findings may pave the way toward the development of 15LO1 inhibitors as asthma treatments.

Authors

Joshua A. Boyce

×

Abstract

Vascular calcification (VC) causes cardiovascular morbidity and mortality in patients with chronic kidney disease (CKD), particularly those with end-stage kidney disease (ESKD) on maintenance dialysis treatment. Although many mechanisms have been proposed, their detailed effects remain incompletely understood. In this issue of the JCI, Li et al. examined the molecular mechanism of the protective role of SIRT6 in VC in patients with CKD. Using in vitro and animal models of CKD, the authors demonstrated that SIRT6 prevents VC by suppressing the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Mechanistically, SIRT6 bound and deacetylated the runt-related transcription factor 2 (Runx2), a key transcription factor for osteogenic differentiation, promoting its nuclear export for proteasome degradation. These studies provide a pathway in the pathogenesis of VC and justify investigating SIRT6 as a potential target in CKD.

Authors

Mohamed G. Atta

×
Research Articles
Abstract

Efficient sarcolemmal repair is required for muscle cell survival, with deficits in this process leading to muscle degeneration. Lack of the sarcolemmal protein dysferlin impairs sarcolemmal repair by reducing secretion of the enzyme acid sphingomyelinase (ASM), and causes limb girdle muscular dystrophy 2B (LGMD2B). The large size of the dysferlin gene poses a challenge for LGMD2B gene therapy efforts aimed at restoring dysferlin expression in skeletal muscle fibers. Here, we present an alternative gene therapy approach targeting reduced ASM secretion, the consequence of dysferlin deficit. We showed that the bulk endocytic ability is compromised in LGMD2B patient cells, which was addressed by extracellularly treating cells with ASM. Expression of secreted human ASM (hASM) using a liver-specific adeno-associated virus (AAV) vector restored membrane repair capacity of patient cells to healthy levels. A single in vivo dose of hASM-AAV in the LGMD2B mouse model restored myofiber repair capacity, enabling efficient recovery of myofibers from focal or lengthening contraction–induced injury. hASM-AAV treatment was safe, attenuated fibro-fatty muscle degeneration, increased myofiber size, and restored muscle strength, similar to dysferlin gene therapy. These findings elucidate the role of ASM in dysferlin-mediated plasma membrane repair and to our knowledge offer the first non–muscle-targeted gene therapy for LGMD2B.

Authors

Daniel C. Bittel, Sen Chandra Sreetama, Goutam Chandra, Robin Ziegler, Kanneboyina Nagaraju, Jack H. Van der Meulen, Jyoti K. Jaiswal

×

Abstract

Chronic kidney disease (CKD) imposes a strong and independent risk for peripheral artery disease (PAD). While solutes retained in CKD patients (uremic solutes) inflict vascular damage, their role in PAD remains elusive. Here, we show that the dietary tryptophan-derived uremic solutes including indoxyl sulfate (IS) and kynurenine (Kyn) at concentrations corresponding to those in CKD patients suppress β-catenin in several cell types, including microvascular endothelial cells (ECs), inhibiting Wnt activity and proangiogenic Wnt targets in ECs. Mechanistic probing revealed that these uremic solutes downregulated β-catenin in a manner dependent on serine 33 in its degron motif and through the aryl hydrocarbon receptor (AHR). Hindlimb ischemia in adenine-induced CKD and IS solute–specific mouse models showed diminished β-catenin and VEGF-A in the capillaries and reduced capillary density, which correlated inversely with blood levels of IS and Kyn and AHR activity in ECs. An AHR inhibitor treatment normalized postischemic angiogenic response in CKD mice to a non-CKD level. In a prospective cohort of PAD patients, plasma levels of tryptophan metabolites and plasma’s AHR-inducing activity in ECs significantly increased the risk of future adverse limb events. This work uncovers the tryptophan metabolite/AHR/β-catenin axis as a mediator of microvascular rarefaction in CKD patients and demonstrates its targetability for PAD in CKD models.

Authors

Nkiruka V. Arinze, Wenqing Yin, Saran Lotfollahzadeh, Marc Arthur Napoleon, Sean Richards, Joshua A. Walker, Mostafa Belghasem, Jonathan D. Ravid, Mohamed Hassan Kamel, Stephen A. Whelan, Norman Lee, Jeffrey J. Siracuse, Stephan Anderson, Alik Farber, David Sherr, Jean Francis, Naomi M. Hamburg, Nader Rahimi, Vipul C. Chitalia

×

Abstract

Human pluripotent stem cells (hPSCs) hold great promise for the treatment of various human diseases. However, their therapeutic benefits and mechanisms for treating corneal endothelial dysfunction remain undefined. Here, we developed a therapeutic regimen consisting of the combination of hPSC-derived corneal endothelial precursors (CEPs) with nicotinamide (NAM) for effective treatment of corneal endothelial dysfunction. In rabbit and nonhuman primate models, intracameral injection of CEPs and NAM achieved long-term recovery of corneal clarity and thickness, similar with the therapeutic outcome of cultured human corneal endothelial cells (CECs). The transplanted human CEPs exhibited structural and functional integration with host resident CECs. However, the long-term recovery relied on the stimulation of endogenous endothelial regeneration in rabbits, but predominantly on the replacing function of transplanted cells during the 3-year follow-up in nonhuman primates, which resemble human corneal endothelium with limited regenerative capacity. Mechanistically, NAM ensured in vivo proper maturation of transplanted CEPs into functional CECs by preventing premature senescence and endothelial-mesenchymal transition within the TGF-β–enriched aqueous humor. Together, we provide compelling experimental evidence and mechanistic insights of simultaneous delivery of CEPs and NAM as a potential approach for treating corneal endothelial dysfunction.

Authors

Zongyi Li, Haoyun Duan, Yanni Jia, Can Zhao, Wenjing Li, Xin Wang, Yajie Gong, Chunxiao Dong, Bochao Ma, Shengqian Dou, Bin Zhang, Dongfang Li, Yihai Cao, Lixin Xie, Qingjun Zhou, Weiyun Shi

×

Abstract

T cells are central to the pathogenesis of lupus nephritis (LN), a common complication of systemic lupus erythematosus (SLE). CD6 and its ligand, activated leukocyte cell adhesion molecule (ALCAM), are involved in T cell activation and trafficking. Previously, we showed that soluble ALCAM is increased in urine (uALCAM) of patients with LN, suggesting that this pathway contributes to disease. To investigate, uALCAM was examined in 1038 patients with SLE and LN from 5 ethnically diverse cohorts; CD6 and ALCAM expression was assessed in LN kidney cells; and disease contribution was tested via antibody blockade of CD6 in murine models of SLE and acute glomerulonephritis. Extended cohort analysis offered resounding validation of uALCAM as a biomarker that distinguishes active renal involvement in SLE, irrespective of ethnicity. ALCAM was expressed by renal structural cells whereas CD6 expression was exclusive to T cells, with elevated numbers of CD6+ and ALCAM+ cells in patients with LN. CD6 blockade in models of spontaneous lupus and immune-complex glomerulonephritis revealed significant decreases in immune cells, inflammatory markers, and disease measures. Our data demonstrate the contribution of the CD6/ALCAM pathway to LN and SLE, supporting its use as a disease biomarker and therapeutic target.

Authors

Samantha A. Chalmers, Rajalakshmy Ayilam Ramachandran, Sayra J. Garcia, Evan Der, Leal Herlitz, Jeanette Ampudia, Dalena Chu, Nicole Jordan, Ting Zhang, Ioannis Parodis, Iva Gunnarsson, Huihua Ding, Nan Shen, Michelle Petri, Chi Chiu Mok, Ramesh Saxena, Krishna R. Polu, Stephen Connelly, Cherie T. Ng, Chandra Mohan, Chaim Putterman

×

Abstract

Vascular calcification (VC) is regarded as an important pathological change lacking effective treatment and associated with high mortality. Sirtuin 6 (SIRT6) is a member of the Sirtuin family, a class III histone deacetylase and a key epigenetic regulator. SIRT6 has a protective role in patients with chronic kidney disease (CKD). However, the exact role and molecular mechanism of SIRT6 in VC in patients with CKD remain unclear. Here, we demonstrated that SIRT6 was markedly downregulated in peripheral blood mononuclear cells (PBMCs) and in the radial artery tissue of patients with CKD with VC. SIRT6-transgenic (SIRT6-Tg) mice showed alleviated VC, while vascular smooth muscle cell–specific (VSMC-specific) SIRT6 knocked-down mice showed severe VC in CKD. SIRT6 suppressed the osteogenic transdifferentiation of VSMCs via regulation of runt-related transcription factor 2 (Runx2). Coimmunoprecipitation (co-IP) and immunoprecipitation (IP) assays confirmed that SIRT6 bound to Runx2. Moreover, Runx2 was deacetylated by SIRT6 and further promoted nuclear export via exportin 1 (XPO1), which in turn caused degradation of Runx2 through the ubiquitin-proteasome system. These results demonstrated that SIRT6 prevented VC by suppressing the osteogenic transdifferentiation of VSMCs, and as such targeting SIRT6 may be an appealing therapeutic target for VC in CKD.

Authors

Wenxin Li, Weijing Feng, Xiaoyan Su, Dongling Luo, Zhibing Li, Yongqiao Zhou, Yongjun Zhu, Mengbi Zhang, Jie Chen, Baohua Liu, Hui Huang

×

Abstract

Early initiation of antiretroviral therapy (ART) in acute HIV infection (AHI) is effective at limiting seeding of the HIV viral reservoir, but little is known about how the resultant decreased antigen load affects long-term Ab development after ART. We report here that Env-specific plasma antibody (Ab) levels and Ab-dependent cellular cytotoxicity (ADCC) increased during the first 24 weeks of ART and correlated with Ab levels persisting after 48 weeks of ART. Participants treated in AHI stage 1 had lower Env-specific Ab levels and ADCC activity on ART than did those treated later. Importantly, participants who initiated ART after peak viremia in AHI developed elevated cross-clade ADCC responses that were detectable 1 year after ART initiation, even though clinically undetectable viremia was reached by 24 weeks. These data suggest that there is more germinal center (GC) activity in the later stages of AHI and that Ab development continues in the absence of detectable viremia during the first year of suppressive ART. The development of therapeutic interventions that can enhance earlier development of GCs in AHI and Abs after ART initiation could provide important protection against the viral reservoir that is seeded in individuals treated early in the disease.

Authors

Julie L. Mitchell, Justin Pollara, Kenneth Dietze, R. Whitney Edwards, Junsuke Nohara, Kombo F. N’guessan, Michelle Zemil, Supranee Buranapraditkun, Hiroshi Takata, Yifan Li, Roshell Muir, Eugene Kroon, Suteeraporn Pinyakorn, Shalini Jha, Sopark Manasnayakorn, Suthat Chottanapund, Pattarawat Thantiworasit, Peeriya Prueksakaew, Nisakorn Ratnaratorn, Bessara Nuntapinit, Lawrence Fox, Sodsai Tovanabutra, Dominic Paquin-Proulx, Lindsay Wieczorek, Victoria R. Polonis, Frank Maldarelli, Elias K. Haddad, Praphan Phanuphak, Carlo P. Sacdalan, Morgane Rolland, Nittaya Phanuphak, Jintanat Ananworanich, Sandhya Vasan, Guido Ferrari, Lydie Trautmann, on behalf of the RV254 and RV304 Study Groups

×

Abstract

Severe glomerular injury ultimately leads to tubulointerstitial fibrosis that determines patient outcome, but the immunological molecules connecting these processes remain undetermined. The present study addressed whether V-domain Ig suppressor of T cell activation (VISTA), constitutively expressed in kidney macrophages, plays a protective role in tubulointerstitial fibrotic transformation after acute antibody-mediated glomerulonephritis. After acute glomerular injury using nephrotoxic serum, tubules in the VISTA-deficient (Vsir–/–) kidney suffered more damage than those in WT kidneys. When interstitial immune cells were examined, the contact frequency of macrophages with infiltrated T cells increased and the immunometabolic features of T cells changed to showing high oxidative phosphorylation and fatty acid metabolism and overproduction of IFN-γ. The Vsir–/– parenchymal tissue cells responded to this altered milieu of interstitial immune cells as more IL-9 was produced, which augmented tubulointerstitial fibrosis. Blocking antibodies against IFN-γ and IL-9 protected the above pathological process in VISTA-depleted conditions. In human samples with acute glomerular injury (e.g., antineutrophil cytoplasmic autoantibody vasculitis), high VISTA expression in tubulointerstitial immune cells was associated with low tubulointerstitial fibrosis and good prognosis. Therefore, VISTA is a sentinel protein expressed in kidney macrophages that prevents tubulointerstitial fibrosis via the IFN-γ/IL-9 axis after acute antibody-mediated glomerular injury.

Authors

Min-Gang Kim, Donghwan Yun, Chae Lin Kang, Minki Hong, Juhyeon Hwang, Kyung Chul Moon, Chang Wook Jeong, Cheol Kwak, Dong Ki Kim, Kook-Hwan Oh, Kwon Wook Joo, Yon Su Kim, Dong-Sup Lee, Seung Seok Han

×

Abstract

Acute myocardial infarction (AMI) induces blood leukocytosis, which correlates inversely with patient survival. The molecular mechanisms leading to leukocytosis in the infarcted heart remain poorly understood. Using an AMI mouse model, we identified gasdermin D (GSDMD) in activated leukocytes early in AMI. We demonstrated that GSDMD is required for enhanced early mobilization of neutrophils to the infarcted heart. Loss of GSDMD resulted in attenuated IL-1β release from neutrophils and subsequent decreased neutrophils and monocytes in the infarcted heart. Knockout of GSDMD in mice significantly reduced infarct size, improved cardiac function, and increased post-AMI survival. Through a series of bone marrow transplantation studies and leukocyte depletion experiments, we further clarified that excessive bone marrow–derived and GSDMD-dependent early neutrophil production and mobilization (24 hours after AMI) contributed to the detrimental immunopathology after AMI. Pharmacological inhibition of GSDMD also conferred cardioprotection after AMI through a reduction in scar size and enhancement of heart function. Our study provides mechanistic insights into molecular regulation of neutrophil generation and mobilization after AMI, and supports GSDMD as a new target for improved ventricular remodeling and reduced heart failure after AMI.

Authors

Kai Jiang, Zizhuo Tu, Kun Chen, Yue Xu, Feng Chen, Sheng Xu, Tingting Shi, Jie Qian, Lan Shen, John Hwa, Dandan Wang, Yaozu Xiang

×

Abstract

Altered redox biology challenges all cells, with compensatory responses often determining a cell’s fate. When 15 lipoxygenase 1 (15LO1), a lipid-peroxidizing enzyme abundant in asthmatic human airway epithelial cells (HAECs), binds phosphatidylethanolamine-binding protein 1 (PEBP1), hydroperoxy-phospholipids, which drive ferroptotic cell death, are generated. Peroxidases, including glutathione peroxidase 4 (GPX4), metabolize hydroperoxy-phospholipids to hydroxy derivatives to prevent ferroptotic death, but consume reduced glutathione (GSH). The cystine transporter SLC7A11 critically restores/maintains intracellular GSH. We hypothesized that high 15LO1, PEBP1, and GPX4 activity drives abnormal asthmatic redox biology, evidenced by lower bronchoalveolar lavage (BAL) fluid and intraepithelial cell GSH:oxidized GSH (GSSG) ratios, to enhance type 2 (T2) inflammatory responses. GSH, GSSG (enzymatic assays), 15LO1, GPX4, SLC7A11, and T2 biomarkers (Western blot and RNA-Seq) were measured in asthmatic and healthy control (HC) cells and fluids, with siRNA knockdown as appropriate. GSSG was higher and GSH:GSSG lower in asthmatic compared with HC BAL fluid, while intracellular GSH was lower in asthma. In vitro, a T2 cytokine (IL-13) induced 15LO1 generation of hydroperoxy-phospholipids, which lowered intracellular GSH and increased extracellular GSSG. Lowering GSH further by inhibiting SLC7A11 enhanced T2 inflammatory protein expression and ferroptosis. Ex vivo, redox imbalances corresponded to 15LO1 and SLC7A11 expression, T2 biomarkers, and worsened clinical outcomes. Thus, 15LO1 pathway–induced redox biology perturbations worsen T2 inflammation and asthma control, supporting 15LO1 as a therapeutic target.

Authors

Tadao Nagasaki, Alexander J. Schuyler, Jinming Zhao, Svetlana N. Samovich, Kazuhiro Yamada, Yanhan Deng, Scott P. Ginebaugh, Stephanie A. Christenson, Prescott G. Woodruff, John V. Fahy, John B. Trudeau, Detcho Stoyanovsky, Anuradha Ray, Yulia Y. Tyurina, Valerian E. Kagan, Sally E. Wenzel

×

Abstract

We investigated the interplay between genetics and oral peanut protein exposure in the determination of the immunological response to peanut using the targeted intervention in the LEAP clinical trial. We identified an association between peanut-specific IgG4 and HLA-DQA1*01:02 that was only observed in the presence of sustained oral peanut protein exposure. The association between IgG4 and HLA-DQA1*01:02 was driven by IgG4 specific for the Ara h 2 component. Once peanut consumption ceased, the association between IgG4-specific Ara h 2 and HLA-DQA1*01:02 was attenuated. The association was validated by observing expanded IgG4-specific epitopes in people who carried HLA-DQA1*01:02. Notably, we confirmed the previously reported associations with HLA-DQA1*01:02 and peanut allergy risk in the absence of oral peanut protein exposure. Interaction between HLA and presence or absence of exposure to peanut in an allergen- and epitope-specific manner implicates a mechanism of antigen recognition that is fundamental to driving immune responses related to allergy risk or protection.

Authors

Kanika Kanchan, Stepan Grinek, Henry T. Bahnson, Ingo Ruczinski, Gautam Shankar, David Larson, George Du Toit, Kathleen C. Barnes, Hugh A. Sampson, Mayte Suarez-Farinas, Gideon Lack, Gerald T. Nepom, Karen Cerosaletti, Rasika A. Mathias

×
Corrigenda

In-Press Preview - Garden Tent Tarp Sun Shade Rain Shelter Beach Picnic Camping Pad

Abstract

The bone marrow (BM) microenvironment regulates acute myeloid leukemia (AML) initiation, proliferation and chemotherapy resistance. Following cancer cell death, a growing body of evidence suggests an important role for remaining apoptotic debris in regulating the immunologic response to, and growth of, solid tumors. Here we investigated the role of macrophage LC3-associated phagocytosis (LAP) within the BM microenvironment of AML. Depletion of BM macrophages increased AML growth in-vivo. We showed that LAP is the predominate method of BM macrophage phagocytosis of dead and dying cells in the AML microenvironment. Targeted inhibition of LAP led to accumulation of apoptotic cells (AC) and apoptotic bodies (AB) resulting in accelerated leukemia growth. Mechanistically, LAP of AMLderived-AB by BM macrophages, resulted in STING pathway activation. We identified that AML derived mitochondrial damage associated molecular patterns were processed by BM macrophages via LAP. Moreover, depletion of mitochondrial DNA (mtDNA) in AML derived-AB showed that it is this mtDNA which was responsible for the induction of STING signalling in BM macrophages. Phenotypically we found that STING activation suppressed AML growth through a mechanism related to increased phagocytosis. In summary, we report that macrophage LAP of apoptotic debris in the AML BM microenvironment suppressed tumor growth.

Authors

Jamie A. Moore, Jayna J. Mistry, Charlotte Hellmich, Rebecca H. Horton, Edyta E. Wojtowicz, Aisha Jibril, Matthew Jefferson, Thomas Wileman, Naiara Beraza, Kristian M. Bowles, Stuart A. Rushworth

×

Abstract

Obstructive arterial diseases including supravalvular aortic stenosis (SVAS), atherosclerosis and restenosis share two important features: an abnormal or disrupted elastic lamellae structure and excessive smooth muscle cells (SMCs). However, the relationship between these pathological features is poorly delineated. SVAS is caused by heterozygous loss-of-function, hypomorphic or deletion mutations in the elastin gene ELN, and SVAS patients and elastin mutant mice display increased arterial wall cellularity and luminal obstructions. Pharmacological treatments for SVAS are lacking as underlying pathobiology is inadequately defined. Herein, using human aortic vascular cells, mouse models as well as aortic samples and SMCs derived from induced pluripotent stem cells of ELN-deficient patients, we demonstrated that elastin insufficiency induced epigenetic changes, upregulating the Notch pathway in SMCs. Specifically, reduced elastin increased levels of γ-secretase, activated NOTCH3 intracellular domain and downstream genes. Notch3 deletion or pharmacological inhibition of γ-secretase attenuated aortic hypermuscularization and stenosis in Eln(-/-) mutants. Eln(-/-) mice expressed higher levels of Notch ligand JAGGED1 (JAG1) in aortic SMCs and endothelial cells (ECs). Finally, Jag1 deletion in SMCs, but not ECs, mitigated the hypermuscular and stenotic phenotype in the aorta of Eln(-/-) mice. Our findings reveal that NOTCH3 pathway upregulation induced pathological aortic SMC accumulation during elastin insufficiency and provide potential therapeutic targets for SVAS.

Authors

Jui M. Dave, Raja Chakraborty, Aglaia Ntokou, Junichi Saito, Fatima Z. Saddouk, Zhonghui Feng, Ashish Misra, George Tellides, Robert K. Riemer, Zsolt Urban, Caroline Kinnear, James Ellis, Seema Mital, Robert Mecham, Kathleen A. Martin, Daniel M. Greif

×

Abstract

BACKGROUND. Presbyosmia, or aging related olfactory loss, occurs in a majority of humans over age 65 years, yet remains poorly understood, with no specific treatment options. The olfactory epithelium (OE) is the peripheral organ for olfaction, and is subject to acquired damage, suggesting a likely site of pathology in aging. Adult stem cells reconstitute the neuroepithelium in response to cell loss under normal conditions. In aged OE, patches of respiratory-like metaplasia have been observed histologically, consistent with a failure in normal neuroepithelial homeostasis. METHODS. Accordingly, we have focused on identifying cellular and molecular changes in presbyosmic OE. The study combined psychophysical testing with olfactory mucosa biopsy analysis, single cell RNA-sequencing (scRNA-seq), and culture studies. RESULTS. We identified evidence for inflammation-associated changes in the OE stem cells of presbyosmic patients. The presbyosmic basal stem cells exhibited increased expression of genes involved in response to cytokines or stress, or the regulation of proliferation and differentiation. Using a culture model, cytokine exposure drove increased TP63, a transcription factor acting to prevent OE stem cell differentiation. CONCLUSIONS. Our data suggest aging-related inflammatory changes in OE stem cells may contribute to presbyosmia, via the disruption of normal epithelial homeostasis. OE stem cells may represent a therapeutic target for restoration of olfaction. TRIAL REGISTRATION. Not applicable FUNDING. National Institutes of Health grants DC018371 (BJG), NS121067 (EAM), DC016224 (HM);Office of Physician-Scientist Development, Burroughs-Wellcome Fund Research Fellowship for Medical Students Award, Duke University School of Medicine (AO).

Authors

Allison D. Oliva, Rupali Gupta, Khalil Issa, Ralph Abi Hachem, David W. Jang, Sebastian A. Wellford, E. Ashley Moseman, Hiroaki Matsunami, Bradley J. Goldstein

×

Abstract

Mutations in TAB2 (transforming growth factor β activated kinase 1 binding protein 2) have been implicated in the pathogenesis of dilated cardiomyopathy and/or congenital heart disease in humans, but the underlying mechanisms are currently unknown. Here we identified an indispensable role for TAB2 in regulating myocardial homeostasis and remodeling by suppressing RIPK1 (receptor-interacting protein kinase 1) activation and RIPK1-dependent apoptosis and necroptosis. Cardiomyocyte-specific deletion of Tab2 in mice triggered dilated cardiomyopathy with massive apoptotic and necroptotic cell death. Moreover, Tab2-deficient mice were also predisposed to myocardial injury and adverse remodeling following pathological stress. In cardiomyocytes, deletion of TAB2, but not its close homologue TAB3, promoted TNFα-induced apoptosis and necroptosis, which was rescued by forced activation of TAK1 or inhibition of RIPK1 kinase activity. Mechanistically, TAB2 critically mediates RIPK1 phosphorylation at Ser321 via a TAK1-dependent mechanism, which prevents RIPK1 kinase activation and the formation of RIPK1-FADD-caspase-8 apoptotic complex or RIPK1-RIPK3 necroptotic complex. Strikingly, genetic inactivation of RIPK1 with Ripk1-K45A knock-in effectively rescued cardiac remodeling and dysfunction in Tab2-deficient mice. Together, these data demonstrate that TAB2 is a key regulator of myocardial homeostasis and remodeling by suppressing RIPK1-dependent apoptosis and necroptosis. Our results also suggest that targeting RIPK1-mediated cell death signaling may represent a promising therapeutic strategy for TAB2 deficiency-induced dilated cardiomyopathy.

Authors

Haifeng Yin, Xiaoyun Guo, Yi Chen, Yachang Zeng, Xiaoliang Mo, Siqi Hong, Hui He, Jing Li, Rachel Steinmetz, Qinghang Liu

×

Abstract

BACKGROUND. Curative gene therapies for sickle cell disease (SCD) are currently undergoing clinical evaluation. The occurrence of myeloid malignancies in these trials has prompted safety concerns. Individuals with SCD are predisposed to myeloid malignancies, but the underlying causes remain undefined. Clonal hematopoiesis (CH) is a pre-malignant condition that also confers significant predisposition to myeloid cancers. While it has been speculated that CH may play a role in SCD-associated cancer predisposition, limited data addressing this issue have been reported. METHODS. Here, we leveraged 74,190 whole genome sequences to robustly study CH in SCD. Somatic mutation calling methods were used to assess CH in all samples and comparisons between individuals with and without SCD were performed. RESULTS. While we had sufficient power to detect a greater than 2-fold increased rate of CH, we found no detectable variation in rate or clone properties between individuals affected by SCD and controls. The rate of CH in individuals with SCD was unaltered by hydroxyurea use. CONCLUSIONS. We did not observe an increased risk for acquiring detectable CH in SCD, at least as measured by whole genome sequencing. These results should help guide ongoing efforts and further studies that seek to better define the risk factors underlying myeloid malignancy predisposition in SCD and help ensure that curative therapies can be more safely applied.FUNDING. Funding was provided by the New York Stem Cell Foundation and National Institutes of Health. The funders had no role in study design or reporting.

Authors

L. Alexander Liggett, Liam D. Cato, Joshua S. Weinstock, Yingze Zhang, S. Mehdi Nouraie, Mark T. Gladwin, Melanie E. Garrett, Allison Ashley-Koch, Marilyn Telen, Brian Custer, Shannon Kelly, Carla Dinardo, Ester C. Sabino, Paula Loureiro, Anna Carneiro-Proietti, Cláudia Maximo, Alexander P. Reiner, Gonçalo R. Abecasis, David A. Williams, Pradeep Natarajan, Alexander G. Bick, Vijay G. Sankaran

×

Advertisement

January 2022 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Circadian Rhythm

Series edited by Amita Sehgal

Animals, plants, and bacteria all display behavioral patterns that coincide with Earth’s light and dark cycles. These oscillating behaviors are the manifestation of the molecular circadian clock, a highly conserved network that maintains a near 24-hour rhythm even in the absence of light. In mammals, light signals are transmitted via the superchiasmatic nucleus (SCN) in the hypothalamus to synchronize peripheral clocks and coordinate physiological functions with the organism’s active period. This collection of reviews, curated by Amita Sehgal, considers the critical role of the circadian system in human health. Technology, work, and social obligations can disrupt optimal sleep and wake schedules, leaving humans vulnerable to diseases affecting the heart, brain, metabolism, and more. Sleep disorders as well as normal variations in human chronotype may exacerbate circadian disruptions, with profound consequences. These reviews emphasize that ongoing efforts to understand the complexities of human circadian rhythm will be essential for developing chronotherapies and other circadian-based interventions.

×